Application of Electrical Resistivity Tomography in Geotechnical and Geoenvironmental Engineering Aspect

Author:

Alam Md Jobair Bin1ORCID,Ahmed Asif2,Alam Md Zahangir3

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA

2. College of Engineering, SUNY Polytechnic Institute, Utica, NY 13502, USA

3. Planning/Engineering Studies, California Department of Transportation, San Bernardino, CA 92401, USA

Abstract

Electrical resistivity tomography (ERT) has turned out to be one of the most applied and user-friendly geophysical methods in geotechnical and geoenvironmental research. ERT is an emerging technology that is becoming popular nowadays for investigating subsurface conditions. Multiple attributes of the technology using various electrode configurations significantly reduce measurement time and are suitable for applications even in hardly accessible mountain areas. It is a noninvasive test for subsurface characterization and a very sensitive method used to determine geophysical properties, i.e., structural integrity, water content, fluid composition, etc. This paper aimed to elucidate the ERT technique’s main features and applications in geotechnical and geoenvironmental engineering through four case studies. The first case study investigated the possible flow paths and areas of moisture accumulation after leachate recirculation in a bioreactor landfill. The second case study attempted to determine the moisture variation along highway pavement. The third case study explored the slope failure investigation by ERT. The fourth case study demonstrated the efficiency of the ERT method in the landfill evapotranspiration (ET) cover to investigate moisture variation on a broader scale and performance monitoring. In all of the four cases, ERT exhibited promising performance.

Funder

Texas Department of Transportation

City of Denton Landfill in Texas

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3