Affiliation:
1. The Neev Center for Geoinfomatics, The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
Abstract
Conventional geophysical methods are suitable for estimating the thicknesses of subsoil layers. By combining several geophysical methods, the uncertainties can be assessed. Hence, the reliability of the results increases with a more accurate engineering solution. To estimate the base of an abandoned landfill, we collected data using classical approaches: high-resolution seismic reflection and refraction, with more modern methods including passive surface wave analysis and horizontal-to-vertical spectral ratio (HVSR) measurements. To evaluate the thickness of the landfill, three different datasets were acquired along each of the two seismic lines, and five different processing methods were applied for each of the two arrays. The results of all the classical methods indicate very consistent correlations and mostly converge to clear outcomes. However, since the shear wave velocity of the landfill is relatively low (<150 (m/s)), the uncertainty of the HVSR results is significant. All these methods are engineering-oriented, environmentally friendly, and relatively low-cost. They may be jointly interpreted to better assess uncertainties and therefore enable an efficient solution for environmental or engineering purposes.