Elastic Solutions to 2D Plane Strain Problems: Nonlinear Contact and Settlement Analysis for Shallow Foundations

Author:

Taylor Adam G.ORCID,Chung Jae H.

Abstract

The classical Neumann boundary value problem of an isotropic, homogeneous elastic half-plane under plane strain conditions is readdressed as the limiting case of the fully three-dimensional problem. Analytical solutions of the stress and strain tensors are obtained by taking the limit from known three-dimensional solutions. It is shown that the displacement fields for the plane strain problem are not well defined. A small number of simple expressions are developed, which provide a general solution for linearly-varying traction over arbitrary regions on the boundary. A simple, efficient, and rapidly convergent algorithm is developed which uses these solutions as analytic elements and provides a solution approach to the general boundary value problem. The method is verified against known solutions for Hertzian contact between parallel cylinders. Two numerical examples are presented for the analysis of shallow foundation systems. In the first, the boundary conditions are informed by analytical elastoplastic calculations and a strain influence analysis is performed and compared with the Schmertmann method. Subsequently, empirical laboratory contact traction distributions measured by Bauer et al., in both the normal and tangential directions are employed as boundary conditions for an analysis of the underlying stress field.

Publisher

MDPI AG

Subject

General Medicine

Reference47 articles.

1. Sur la repartition des pressions dans un solide rectangulaire charge transversalement;Compt. Rendus,1892

2. Johnson, K. (1985). Contact Mechanics, Cambridge University Press.

3. Hemsley, J. (1998). Elastic Analysis of Raft Foundations, Thomas Telford Publishing.

4. Muskhelishvili, N. (1963). Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff.

5. England, A. (1971). Complex Variable Methods in Elasticity, Dover Publications.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3