Advancing TBM Performance: Integrating Shield Friction Analysis and Machine Learning in Geotechnical Engineering

Author:

Schlicke Marcel1ORCID,Wannenmacher Helmut2ORCID,Nübel Konrad1ORCID

Affiliation:

1. Chair of Construction Process Management, Technical University Munich, 80333 Munich, Germany

2. Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52064 Aachen, Germany

Abstract

The Ylvie model is a novel method towards transparent Tunnel Boring Machine (TBM) data analysis for tunnel construction. The model innovatively applies machine learning to automate friction loss computation per stroke, enhancing TBM performance prediction in varying geomechanical environments. This research considers the complexities of TBM mechanics, focusing on the Thrust Penetration Gradient (TPG) and shield friction influenced by geological conditions. By integrating operational data analysis with geological exploration, the Ylvie model transcends traditional methodologies, allowing for a comprehensible and specific determination of the friction loss towards more precise penetration rate prediction. The model’s capability is validated through comparative analysis with established methods, demonstrating its effectiveness even in challenging hard rock tunneling scenarios. This study marks a significant advancement in TBM performance analysis, suggesting potential for the expanded application and future integration of additional data sources for comprehensive rock mass characterization.

Publisher

MDPI AG

Reference26 articles.

1. Macias, F.J. (2016). Hard Rock Tunnel Boring: Performance Predictions and Cutter Life Assessments. [Ph.D. Thesis, Norwegian University of Science and Technology (NTNU)].

2. Rostami, J. (1997). Development of a Force Estimation Model for Rock Fragmentation with Disccutters through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure. [Ph.D. Thesis, Colorado School of Mines].

3. Leistungs- und Verschleissprognosen im maschinellen Tunnelbau;Gehring;Felsbau,1995

4. Bruland, A. (1998). Hard Rock Tunnel Boring. [Ph.D. Thesis, Norwegian University of Science and Technology (NTNU)].

5. Learning and optimization from the exploratory tunnel—Brenner Base Tunnel;Bergmeister;Geomech. Tunn.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3