2 kW Dual-Output Isolated DC/DC Converter Based on Current Doubler and Step-Down Chopper

Author:

Matsushita YoshinoriORCID,Noguchi Toshihiko,Taguchi Noritaka,Ishii Makoto

Abstract

In the context of the auxiliary power for motor-driven vehicles having two systems, we propose a new topology for a dual-output isolated DC/DC converter, which offers advantages in terms of efficiency and size. The proposed circuit consists of an H-bridge inverter, a transformer, and an integrated circuit of a current doubler and step-down chopper. Considering the high power and high frequency, our objective was to evaluate and identify the issues of an actual device with a power output of 2 kW and switching frequency of 400 kHz. The circuit feasibility was examined through measurements of the prototype, and both the voltage target response and load disturbance response characteristics were confirmed to operate as designed. The maximum and minimum efficiencies of this circuit were 81.3 and 61.5%, respectively, demonstrating that the load loss of the step-down chopper had a significant impact on the efficiency. The loss analysis revealed that the loss at the integrated circuit on the secondary side accounted for more than 50% of the total loss. Moreover, issues such as the behavior at power-on, efficiency, and size were identified and evaluated, thereby achieving the objectives of the study.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference20 articles.

1. IEA–International Energy Agency, CO2 Emissions from Fuel Combustion: Overview https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview

2. IEA–International Energy Agency, Global EV Outlook 2020 https://www.iea.org/reports/global-ev-outlook-2020

3. Efficiency-Optimized High-Current Dual Active Bridge Converter for Automotive Applications

4. Estimation of the Effects of Auxiliary Electrical Loads on Hybrid Electric Vehicle Fuel Economy;Rhodes;SAE Tech. Pap.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3