Efficient Non-Sampling Graph Neural Networks

Author:

Ji Jianchao1,Li Zelong1ORCID,Xu Shuyuan1,Ge Yingqiang1,Tan Juntao1,Zhang Yongfeng1

Affiliation:

1. Computer Science, Rutgers University, Piscataway, NJ 08854, USA

Abstract

A graph is a widely used and effective data structure in many applications; it describes the relationships among nodes or entities. Currently, most semi-supervised or unsupervised graph neural network models are trained based on a very basic operation called negative sampling. Usually, the purpose of the learning objective is to maximize the similarity between neighboring nodes while minimizing the similarity between nodes that are not close to each other. Negative sampling can reduce the time complexity by sampling a small fraction of the negative nodes instead of using all of the negative nodes when optimizing the objective. However, sampling of the negative nodes may fail to deliver stable model performance due to the uncertainty in the sampling procedure. To avoid such disadvantages, we provide an efficient Non-Sampling Graph Neural Network (NS-GNN) framework. The main idea is to use all the negative samples when optimizing the learning objective to avoid the sampling process. Of course, directly using all of the negative samples may cause a large increase in the model training time. To mitigate this problem, we rearrange the origin loss function into a linear form and take advantage of meticulous mathematical derivation to reduce the complexity of the loss function. Experiments on benchmark datasets show that our framework can provide better efficiency at the same level of prediction accuracy compared with existing negative sampling-based models.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3