Prediction of Heatwave Using Advanced Soft Computing Technique

Author:

Das Ratnakar1,Mishra Jibitesh1,Pattnaik Pradyumna Kumar2ORCID,Bhatti Muhammad Mubashir34ORCID

Affiliation:

1. Department of Computer Science & Application, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India

2. Department of Mathematics, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India

3. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

4. Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa

Abstract

At present, there is no suitable instrument available to simulate modeling the thermal performance of various areas of our states due to its complicated meteorological behavior. To accurately predict a heatwave, we studied the research gaps and current ongoing research on the prediction of heatwaves. For the accurate prediction of a heatwave, we considered two soft computing concepts, (a) Rough Set Theory (RST) and (b) Support Vector Machine (SVM). All the ongoing research on the prediction of heatwaves is based on future predictions with an error margin. All the available techniques use a particular pattern of heatwave data, and these methods do not apply to vague data. This paper used an innovative RST and SVM technique, which can be applied to vague and imprecise datasets to produce the best outcomes. RST is helpful in finding the most significant attributes that will be alarming in the future. This analysis identifies the heat wave as the most prominent characteristic among various meteorological data. SVM is responsible for the future prediction of heat waves, which includes various parameters. By further classification of heatwaves, we found that a lack of greenery will increase the heatwave in the future. Although the survey was conducted based on a sampling distribution, we expect this result to represent the population as we collected our sample in a heterogeneous environment. These outcomes are validated using a statistical method.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3