Affiliation:
1. School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
Abstract
This paper provides a comprehensive review of the applications of smart meters in the control and optimisation of power grids to support a smooth energy transition towards the renewable energy future. The smart grids become more complicated due to the presence of small-scale low inertia generators and the implementation of electric vehicles (EVs), which are mainly based on intermittent and variable renewable energy resources. Optimal and reliable operation of this environment using conventional model-based approaches is very difficult. Advancements in measurement and communication technologies have brought the opportunity of collecting temporal or real-time data from prosumers through Advanced Metering Infrastructure (AMI). Smart metering brings the potential of applying data-driven algorithms for different power system operations and planning services, such as infrastructure sizing and upgrade and generation forecasting. It can also be used for demand-side management, especially in the presence of new technologies such as EVs, 5G/6G networks and cloud computing. These algorithms face privacy-preserving and cybersecurity challenges that need to be well addressed. This article surveys the state-of-the-art of each of these topics, reviewing applications, challenges and opportunities of using smart meters to address them. It also stipulates the challenges that smart grids present to smart meters and the benefits that smart meters can bring to smart grids. Furthermore, the paper is concluded with some expected future directions and potential research questions for smart meters, smart grids and their interplay.
Funder
Australian Research Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献