Self-Supervised Contrastive Learning for Medical Time Series: A Systematic Review

Author:

Liu Ziyu1,Alavi Azadeh1,Li Minyi2,Zhang Xiang3ORCID

Affiliation:

1. School of Computing Technologies, RMIT, Melbourne, VIC 3000, Australia

2. Coles, Melbourne, VIC 3123, Australia

3. Department of Computer Science, University of North Carolina, Charlotte, NC 28223, USA

Abstract

Medical time series are sequential data collected over time that measures health-related signals, such as electroencephalography (EEG), electrocardiography (ECG), and intensive care unit (ICU) readings. Analyzing medical time series and identifying the latent patterns and trends that lead to uncovering highly valuable insights for enhancing diagnosis, treatment, risk assessment, and disease progression. However, data mining in medical time series is heavily limited by the sample annotation which is time-consuming and labor-intensive, and expert-depending. To mitigate this challenge, the emerging self-supervised contrastive learning, which has shown great success since 2020, is a promising solution. Contrastive learning aims to learn representative embeddings by contrasting positive and negative samples without the requirement for explicit labels. Here, we conducted a systematic review of how contrastive learning alleviates the label scarcity in medical time series based on PRISMA standards. We searched the studies in five scientific databases (IEEE, ACM, Scopus, Google Scholar, and PubMed) and retrieved 1908 papers based on the inclusion criteria. After applying excluding criteria, and screening at title, abstract, and full text levels, we carefully reviewed 43 papers in this area. Specifically, this paper outlines the pipeline of contrastive learning, including pre-training, fine-tuning, and testing. We provide a comprehensive summary of the various augmentations applied to medical time series data, the architectures of pre-training encoders, the types of fine-tuning classifiers and clusters, and the popular contrastive loss functions. Moreover, we present an overview of the different data types used in medical time series, highlight the medical applications of interest, and provide a comprehensive table of 51 public datasets that have been utilized in this field. In addition, this paper will provide a discussion on the promising future scopes such as providing guidance for effective augmentation design, developing a unified framework for analyzing hierarchical time series, and investigating methods for processing multimodal data. Despite being in its early stages, self-supervised contrastive learning has shown great potential in overcoming the need for expert-created annotations in the research of medical time series.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data analytics framework for sparse longitudinal structured biomedical data;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. Intelligent Clinical Decision Support System for Managing COPD Patients;Journal of Personalized Medicine;2023-09-06

3. Applications of Self-Supervised Learning to Biomedical Signals: A Survey;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3