Affiliation:
1. Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
Abstract
Abnormal posture or movement is generally the indicator of musculoskeletal injuries or diseases. Mechanical forces dominate the injury and recovery processes of musculoskeletal tissue. Using kinematic data collected from wearable sensors (notably IMUs) as input, activity recognition and musculoskeletal force (typically represented by ground reaction force, joint force/torque, and muscle activity/force) estimation approaches based on machine learning models have demonstrated their superior accuracy. The purpose of the present study is to summarize recent achievements in the application of IMUs in biomechanics, with an emphasis on activity recognition and mechanical force estimation. The methodology adopted in such applications, including data pre-processing, noise suppression, classification models, force/torque estimation models, and the corresponding application effects, are reviewed. The extent of the applications of IMUs in daily activity assessment, posture assessment, disease diagnosis, rehabilitation, and exoskeleton control strategy development are illustrated and discussed. More importantly, the technical feasibility and application opportunities of musculoskeletal force prediction using IMU-based wearable devices are indicated and highlighted. With the development and application of novel adaptive networks and deep learning models, the accurate estimation of musculoskeletal forces can become a research field worthy of further attention.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Space Medical Experiment Project of China Manned Space Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献