Metamaterials for Acoustic Noise Filtering and Energy Harvesting

Author:

Mir Fariha1,Mandal Debdyuti1ORCID,Banerjee Sourav1ORCID

Affiliation:

1. Integrated Material Assessment and Predictive Simulation Laboratory (i-MAPS), Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

Abstract

Artificial methods for noise filtering are required for the twenty-first century’s Factory vision 4.0. From various perspectives of physics, noise filtering capabilities could be addressed in multiple ways. In this article, the physics of noise control is first dissected into active and passive control mechanisms and then further different physics are categorized to visualize their respective physics, mechanism, and target of their respective applications. Beyond traditional passive approaches, the comparatively modern concept for sound isolation and acoustic noise filtering is based on artificial metamaterials. These new materials demonstrate unique interaction with acoustic wave propagation exploiting different physics, which is emphasized in this article. A few multi-functional metamaterials were reported to harvest energy while filtering the ambient noise simultaneously. It was found to be extremely useful for next-generation noise applications where simultaneously, green energy could be generated from the energy which is otherwise lost. In this article, both these concepts are brought under one umbrella to evaluate the applicability of the respective methods. An attempt has been made to create groundbreaking transformative and collaborative possibilities. Controlling of acoustic sources and active damping mechanisms are reported under an active mechanism. Whereas Helmholtz resonator, sound absorbing, spring-mass damping, and vibration absorbing approaches together with metamaterial approaches are reported under a passive mechanism. The possible application of metamaterials with ventilation while performing noise filtering is reported to be implemented for future Smart Cities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference137 articles.

1. Elliott, S. (2010). Vehicle Noise and Vibration Refinement, Elsevier.

2. Current and future issues of active noise control;Tichy;J. Acoust. Soc. Jpn. E,1991

3. An evaluation of active noise control in a cylindrical shell;Silcox;J. Vib. Acoust.,1989

4. A demonstration of active noise reduction in an aircraft cabin;Dorling;J. Sound Vib.,1989

5. Preliminary results of in-flight experiments on the active control of propeller-induced cabin noise;Elliott;J. Sound Vib.,1989

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3