Stackelberg Game Approach for Service Selection in UAV Networks

Author:

Hadjkouider Abdessalam Mohammed1,Kerrache Chaker Abdelaziz2ORCID,Korichi Ahmed1,Sahraoui Yesin1,Calafate Carlos T.3ORCID

Affiliation:

1. LINATI Laboratory, Department of Computer Science and Information Technology, Kasdi Merbah University of Ouargla, 30000 Ouargla, Algeria

2. Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, 03000 Laghouat, Algeria

3. Computer Engineering Department (DISCA), Universitat Politècnica de València, 46022 Valencia, Spain

Abstract

Nowadays, mobile devices are expected to perform a growing number of tasks, whose complexity is also increasing significantly. However, despite great technological improvements in the last decade, such devices still have limitations in terms of processing power and battery lifetime. In this context, mobile edge computing (MEC) emerges as a possible solution to address such limitations, being able to provide on-demand services to the customer, and bringing closer several services published in the cloud with a reduced cost and fewer security concerns. On the other hand, Unmanned Aerial Vehicle (UAV) networking emerged as a paradigm offering flexible services, new ephemeral applications such as safety and disaster management, mobile crowd-sensing, and fast delivery, to name a few. However, to efficiently use these services, discovery and selection strategies must be taken into account. In this context, discovering the services made available by a UAV-MEC network, and selecting the best services among those available in a timely and efficient manner, can become a challenging task. To face these issues, game theory methods have been proposed in the literature that perfectly suit the case of UAV-MEC services by modeling this challenge as a Stackelberg game, and using existing approaches to find the solution for such a game aiming at an efficient services’ discovery and service selection. Hence, the goal of this paper is to propose Stackelberg-game-based solutions for service discovery and selection in the context of UAV-based mobile edge computing. Simulations results conducted using the NS-3 simulator highlight the efficiency of our proposed game in terms of price and QoS metrics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3