Author:
Sarabia José María,Jorda Vanesa
Abstract
The purpose of this paper is to derive analytic expressions for the multivariate Lorenz surface for a relevant type of models based on the class of distributions with given marginals described by Sarmanov and Lee. The expression of the bivariate Lorenz surface can be conveniently interpreted as the convex linear combination of products of classical and concentrated univariate Lorenz curves. Thus, the generalized Gini index associated with this surface is expressed as a function of marginal Gini indices and concentration indices. This measure is additively decomposable in two factors, corresponding to inequality within and between variables. We present different parametric models using several marginal distributions including the classical Beta, the GB1, the Gamma, the lognormal distributions and others. We illustrate the use of these models to measure multidimensional inequality using data on two dimensions of well-being, wealth and health, in five developing countries.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献