Constrained Mixed-Variable Design Optimization Based on Particle Swarm Optimizer with a Diversity Classifier for Cyclically Neighboring Subpopulations

Author:

Kim Tae-HyoungORCID,Cho Minhaeng,Shin Sangwoo

Abstract

In this research, an easy-to-use particle swarm optimizer (PSO) for solving constrained engineering design problems involving mixed-integer-discrete-continuous (MIDC) variables that adopt two kinds of diversity-enhancing mechanisms to achieve superior reliability and validity was developed. As an initial diversity-boosting tool, the local neighborhood topology of each particle is set up such that information exchange is restricted to a limited number of consecutively numbered particles. This topological mechanism forces each particle to move in the search space while interacting only with its neighboring subpopulation. The second diversity-enhancing task is to ensure that the exploration behavior of each particle in the search space is governed such that it follows the diversity classifier decision applied to its subpopulation. This diversity classification iteratively adjusts the three-phase velocity-related mechanism of each particle such that it approaches or retreats from its previous best position/the current best position among the subpopulation. In summary, this PSO tool not only introduces the social interaction of the particle within its cyclically neighboring subpopulation but also exploits the three-phase velocity behavior law governed by the distributed diversity measures categorized for each neighboring subpopulation. This scheme has superior reliability, as well as high practicality for engineering optimization problems involving MIDC variables, which are handled by the widely adopted straightforward rounding-off technique used in most swarm-inspired metaheuristic search technologies.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3