Abstract
This study introduces a general framework on inference for a general parameter using nonprobability survey data when a probability sample with auxiliary variables, common to both samples, is available. The proposed framework covers parameters from inequality measures and distribution function estimates but the scope of the paper is broader. We develop a rigorous framework for general parameter estimation by solving survey weighted estimating equations which involve propensity score estimation for units in the non-probability sample. This development includes the expression of the variance estimator, as well as some alternatives which are discussed under the proposed framework. We carried a simulation study using data from a real-world survey, on which the application of the estimation methods showed the effectiveness of the proposed design-based inference on several general parameters.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献