An Algorithm for the Numerical Integration of Perturbed and Damped Second-Order ODE Systems

Author:

García-Alonso FernandoORCID,Reyes José AntonioORCID,Cortés-Molina MónicaORCID

Abstract

A new method of numerical integration for a perturbed and damped systems of linear second-order differential equations is presented. This new method, under certain conditions, integrates, without truncation error, the IVPs (initial value problems) of the type: x″(t)+Ax′(t)+Cx(t)=εF(x(t),t), x(0)=x0, x′(0)=x0′, t∈[a,b]=I, which appear in structural dynamics, astrodynamics, and other fields of physics and engineering. In this article, a succession of real functions is constructed with values in the algebra of m×m matrices. Their properties are studied and we express the solution of the proposed IVP through a serial expansion of the same, whose coefficients are calculated by means of recurrences involving the perturbation function. This expression of the solution is used for the construction of the new numerical method. Three problems are solved by means of the new series method; we contrast the results obtained with the exact solution of the problem and with its first integral. In the first problem, a quasi-periodic orbit is integrated; in the second, a problem of structural dynamics associated with an earthquake is studied; in the third, an equatorial satellite problem when the perturbation comes from zonal harmonics J2 is solved. The good behavior of the series method is shown by comparing the results obtained against other integrators.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference45 articles.

1. A method of computation for structural dynamics;Newmark;ASCE J. Eng. Mech. Div.,1959

2. A family of single-step Houbolt time integration algorithms for structural dynamics

3. Fundamentals of Structural Dynamics;Craig,2006

4. Dynamics of Structures: Theory and Applications to Earthquake Engineering;Chopra,2007

5. New implicit method for analysis of problems in nonlinear structural dynamics;Gholampour;Appl. Comput. Mech.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3