Foreground Detection with Deeply Learned Multi-Scale Spatial-Temporal Features

Author:

Wang Yao,Yu Zujun,Zhu LiqiangORCID

Abstract

Foreground detection, which extracts moving objects from videos, is an important and fundamental problem of video analysis. Classic methods often build background models based on some hand-craft features. Recent deep neural network (DNN) based methods can learn more effective image features by training, but most of them do not use temporal feature or use simple hand-craft temporal features. In this paper, we propose a new dual multi-scale 3D fully-convolutional neural network for foreground detection problems. It uses an encoder–decoder structure to establish a mapping from image sequences to pixel-wise classification results. We also propose a two-stage training procedure, which trains the encoder and decoder separately to improve the training results. With multi-scale architecture, the network can learning deep and hierarchical multi-scale features in both spatial and temporal domains, which is proved to have good invariance for both spatial and temporal scales. We used the CDnet dataset, which is currently the largest foreground detection dataset, to evaluate our method. The experiment results show that the proposed method achieves state-of-the-art results in most test scenes, comparing to current DNN based methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3