Insights in the Ionic Conduction inside Nanoporous Metal-Organic Frameworks by Using an Appropriate Equivalent Circuit

Author:

Chandresh Abhinav,Zhang Zejun,Heinke LarsORCID

Abstract

The conduction of protons and other ions in nanoporous materials, such as metal-organic frameworks (MOFs), is intensively explored with the aim of enhancing the performance of energy-related electrochemical systems. The ionic conductivity, as a key property of the material, is typically determined by using electrochemical impedance spectroscopy (EIS) in connection with a suitable equivalent circuit. Often, equivalent circuits are used where the physical meaning of each component is debatable. Here, we present an equivalent circuit for the ionic conduction of electrolytes in nanoporous, nonconducting materials between inert and impermeable electrodes without faradaic electrode reactions. We show the equivalent circuit perfectly describes the impedance spectra measured for the ion conduction in MOFs in the form of powders pressed into pellets as well as for MOF thin films. This is demonstrated for the ionic conduction of an aprotic ionic liquid, and of various protic solvents in different MOF structures. Due to the clear physical meaning of each element of the equivalent circuit, further insights into the electrical double layer forming at the MOF-electrode interface can be obtained. As a result, EIS combined with the appropriate reference circuit allows us to make statements of the quality of the MOF-substrate interface of different MOF-film samples.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3