Structure and Properties of TiO2/nanoTiO2 Bimodal Coatings Obtained by a Hybrid PVD/ALD Method on 316L Steel Substrate

Author:

Staszuk Marcin,Pakuła DanielORCID,Reimann ŁukaszORCID,Kloc-Ptaszna Anna,Pawlyta MirosławaORCID,Kříž Antonín

Abstract

This paper presents the synergy of the effect of two surface engineering technologies—magnetron sputtering (MS-PVD) and atomic layer deposition (ALD) on the structure and properties of 316L steel. Recent studies indicate that PVD coatings, despite their thickness of a few micrometers, have many discontinuities and structural defects, which may lead to pitting corrosion after time. Applying an ALD layer to a PVD coating seals its structure and contributes to extending the service life of the coating. Investigations of the structure and morphology of the produced layers were carried out using a scanning electron microscope (SEM) and atomic force microscope (AFM). In addition, the structure of the coatings was investigated on the cross-section using a scanning-transmission electron microscope S/TEM. The tribological properties of the materials studied were determined by the ball-on-disc method. The corrosion resistance of the tested materials was determined by the electrochemical potentiodynamic method by recording the polarization curves of the anodes. Additional information about the electrochemical properties of the tested samples, including the quality, their tightness, and their resistivity, was obtained by electrochemical impedance spectroscopy (EIS). In addition, the main mechanisms of corrosion and tribological wear were determined by SEM observations after corrosion tests and after tribological tests. The study showed that the fabrication of hybrid layers by MS-PVD and ALD techniques allows obtaining coatings with electrochemical properties superior to those of layers fabricated by only one method.

Funder

European Union from the European Social Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3