Study on Influence of Joint Locations and Hydraulic Coupling Actions on Rock Masses’ Failure Process

Author:

Chen YunjuanORCID,Gao Tao,Yin Fuqiang,Liu Xiaozhi,Wang Jun

Abstract

Distribution of joints and fissures under hydraulic coupling condition is particularly critical to the stability of surrounding rock masses in underground engineering construction. In this paper, DDARF (Discontinuous Deformation Analysis for Rock Failure) and RFPA (Rock Failure Process Analysis) are compared and analyzed firstly based on laboratory tests. Then using preferred software RFPA, the failure process, stress state, acoustic emission characteristics and energy dissipation laws of rock masses with different joint locations are analyzed under the hydraulic coupling condition. Results show that a large tensile stress region is generated on both ends of the original joint with the micro-cracks’ propagation, water pressure in cracks promotes the generation of tensile stress to a certain extent, damage effect angle increases gradually from the rock specimen with the middle joint to that with the marginal joint; the same water pressure has a certain auxiliary effect on the main crack failure when the joint is close to the middle part of the specimen, and has a dominant effect on the local crack failure when the joint is far away from the middle; the maximum water pressure shows the “U” shaped distribution. At low initial water pressure, stresses of specimens with symmetrical joint locations have similar evolution trends, while at high initial water pressure, the water pressure in cracks has significant dissipation and thus the maximum water pressure in the system does not exceed the initial value. The length of the main crack path is positively proportional to the number of acoustic emissions and the energy accumulation capacity, and evolution of the damage variable basically shows a development trend of steady growth-rapid growth-steady growth.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3