Experimental and Theoretical Modelling of Concentrating Photovoltaic Thermal System with Ge-Based Multi-Junction Solar Cells

Author:

Hmouda Rida Ali,Muzychka Yuri S.,Duan Xili

Abstract

Climate change is one of the biggest environmental, political, economic, technological, and social challenges of the 21st century. Due to ever-increasing fossil fuels costs. The world energy system should be transitioned to renewable energy sources to mitigate greenhouse gas emissions. Solar energy is one of the suitable alternatives to fossil fuel usage. Currently, the most widely available solar technologies are solar photovoltaic (PV) and solar thermal. The integration of these two techniques enables the exploitation of the most significant amount of solar radiation. This combination has led to a hybrid photovoltaic/thermal system (PV/T). Concentrated solar radiation on PV cells, known as concentrated photovoltaic (CPV), effectively decreases PV receivers’ area and harnesses the same quantity of solar radiation. However, the main problem with CPV is the elevated PV surface temperature, which often requires active cooling. This issue can be solved by introducing a Concentrating Photovoltaic Thermal (CPVT) system. In this article, a new CPVT hybrid system based on Point Focus Fresnel Lens (PFFL) and embedded Multi Junction Photovoltaic (MJPV) (GaInP/InGaAs/Ge) cells has been experimentally investigated and numerically modelled under indoor conditions. Experiments and simulations were carried out at different heat transfer fluid (HTF) flow rates and under constant irradiation emitted from a sun simulator. The results indicate that the thermal and electrical performance of the CPVT system improves under the testing conditions, where the total efficiency was 68.7% and 73.5% for the experimental and CFD models, respectively. At the same time, the highest thermal efficiency of the experimental and CFD models was 49.5% and 55.4%, respectively. In contrast, the highest electrical efficiency was 36.5% and 37.1%. Therefore, the CPVT system has an excellent possibility of being competitive with conventional power generation systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference34 articles.

1. Planning and Installing Solar Thermal Systems: A Guide for Installers, Architects, and Engineers;Sonnenenergie,2010

2. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations

3. Experimental and Theoretical Analysis of Microchannel Cooling for Photovoltaic Solar Cells,2014

4. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3