An Experimental Study of the Heat Storage and the Discharge Performance and an Economic Performance Analysis of a Flat Plate Phase Change Material (PCM) Storage Tank

Author:

Zhao Juan,Gao Junmei,Liao Junhui,Zhou Botao,Bai Yifei,Qiang Tianwei

Abstract

Solar heating technology has the advantages of being high efficiency, energy-saving, and environment protecting; however, the instability of solar energy and its mismatch with the variation characteristics of building heat load have caused great difficulties in the design and the efficient operation strategy of a solar system. A heat storage tank is an important part of a solar hot water system. In order to improve system efficiency, this paper proposes a flat plate PCM storage tank, establishes a mathematical model, and conducts experimental verification under different working conditions. Experiments show that in the heat storage process, the phase change material (PCM) only accounts for less than 20% of the space of the PCM storage tank, and its heat storage can reach 50% of the total heat storage of the tank. In the discharge process, the water temperature of the ordinary tank decreases by 20 °C within 1.5 h, and the phase change process lasts approximately 3 h, with the water temperature remaining at 45~50 °C during this period. In the natural cooling process, the heat discharge of the two water tanks at night was similar, while the temperature of the ordinary water tank decreased by 12 °C and that of the phase change water tank decreased by 7 °C. By simulating the dynamic simulation model of the composite solar phase change thermal storage combined with an air-cooled heat pump system, the results show that the solar heating system with a PCM storage tank (SHS-PCM) saves 34% more energy than a solar heating system with a common tank (SHS-without PCM), and the volume of the PCM storage tank is reduced to 1/5 of the ordinary tank. The investment payback period method of energy saving reconstruction is used to analyze the economy of the SHS-PCM and the SHS-without PCM, the initial investment cost of the SHS-PCM is CNY 9858 higher than the SHS-without PCM, but the annual operation cost is saved by CNY 12,100, and the project investment payback period is 0.81 years, which has energy-saving potential and economic benefits.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3