Shale Oil Enrichment Mechanism of the Paleogene Xingouzui Formation, Jianghan Basin, China

Author:

Li Qiqi,Xu Shang,Zhang Liang,Chen Fengling,Wu Shiqiang,Bai Nan

Abstract

Organic-rich lacustrine shales are widely developed in China, and they have long been simply regarded as homogeneous source rocks, which restricts the understanding of intrasource oil accumulation. At present, the study of the LXF (Lower Member of the Xingouzui Formation) in the Jianghan Basin as an unconventional oil reservoir is still in its infancy, and the hydrocarbon accumulation mechanism is still unclear. Geochemical and mineralogical studies were carried out on a suite of samples from the 100-m-thick sequence, i.e., LXF II Oil Bed, by using XRD, SEM, MICP, and Rock-Eval pyrolysis. The results show that the II Oil Bed is rich in carbonate and poor in clay, so it shows a good fracturing tendency. The high degree of heterogeneity in mineral composition leads to frequent interbedding of different lithofacies. In the II Oil Bed, intercrystalline pores, interparticle pores, and intraparticle pores are developed, and micro-fractures are often observed. However, the main pore types, pore size distribution, and connectivity are quite different among lithofacies, and the carbonate-rich lithofacies have better reservoir capacity. The OM (organic matter) abundance of the II Oil Bed varies greatly and generally ranges from fair to very good. Coupled with its early-mature to mature Type II OM, it is considered to have the characteristics required for oil generation. Comprehensive analysis shows that the II Oil Bed has good shale oil exploration prospects, and the enrichment of shale oil in the sequence is the result of multiple factors matching. Firstly, high organic matter abundance is the material basis for shale oil enrichment. Secondly, thermal maturity is a prerequisite, and the difference in burial depth leads to the differential enrichment of shale oil in different areas. Thirdly, pores and micro-fractures developed in shale not only provide space for hydrocarbon storage, but also form a flow-path network. Finally, multi-scale intrasource migrations are key processes ranging from the scale of lithofacies to the intervals, which further results in the differential shale oil enrichment in different lithofacies and intervals. Considering the hydrocarbon generation capacity and reservoir quality, the prospective depth for shale oil exploration in the study area is >1350 m. The findings of this study can help in the better-understanding of the shale oil enrichment mechanism, and the optimization of future exploration strategies.

Funder

National Natural Science Foundation of China

Shandong Provincial Key Research and Development Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3