Applying Artificial Neural Networks and Nonlinear Optimization Techniques to Fault Location in Transmission Lines—Statistical Analysis

Author:

Rocha Simone A.,Mattos Thiago G.ORCID,Cardoso Rodrigo T. N.ORCID,Silveira Eduardo G.

Abstract

This study presents applications of artificial neural networks and nonlinear optimization techniques for fault location in transmission lines using simulated data in an electromagnetic transient program and actual data occurring in transmission lines. The localization is performed by a modular structure of 4 neural networks and by the minimization of objective functions descriptive of the problem, defined according to the parameters of the line and the type of short circuit, submitted to the methods Quasi-Newton, Ellipsoidal, and Real Polarized Genetic Algorithm. The results obtained are compared statistically with those of a classical analytical method. The analysis of the variance of location errors presented by the methods revealed, with 5% significance, statistical evidence that allowed the conclusion that the type of method used affects fault location indication. In simulated scenarios, minor errors were obtained with the neural network and larger with the analytical method. For field oscillographic, the largest errors were in the neural network; there is no evidence to reject the equality between the results of the analytical method and the nonlinear optimization techniques. The Tukey test identified no differences between the nonlinear optimization methods applied to the proposed objective functions, but the low computational cost associated with the Quasi-newton method highlights it. The nonlinear optimization methods used for the localization function proved to be promising for application in companies that operate electrical systems, providing localization errors similar to those presented by the classical analytical method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3