Abstract
There is a strong demand for materials with inherently high creep resistance in the harsh environment of next-generation nuclear reactors. High entropy alloys have drawn intense attention in this regard due to their excellent elevated temperature properties and irradiation resistance. Here, the time-dependent plastic deformation behavior of two refractory high entropy alloys was investigated, namely HfTaTiVZr and TaTiVWZr. These alloys are based on reduced activity metals from the 4-5-6 elemental palette that would allow easy post-service recycling after use in nuclear reactors. The creep behavior was investigated using nano-indentation over the temperature range of 298 K to 573 K under static and dynamic loads up to 5 N. Creep stress exponent for HfTaTiVZr and TaTiVWZr was found to be in the range of 20–140 and the activation volume was ~16–20b3, indicating dislocation dominated mechanism. The stress exponent increased with increasing indentation depth due to a higher density of dislocations and their entanglement at larger depth and the exponent decreased with increasing temperature due to thermally activated dislocations. Smaller creep displacement and higher activation energy for the two high entropy alloys indicate superior creep resistance compared to refractory pure metals like tungsten.
Subject
General Physics and Astronomy
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献