Author:
Jeon Wooyoung,Lee Chul-Yong
Abstract
As a major option for reducing greenhouse gas emission and sustainable development, renewable generation is rapidly expanding in the power sector. However, the variability and uncertainty of renewable generation undermine the reliability of the power system, requiring additional reserve capacities. This study estimates the costs induced by additional reserve capacities to reduce the uncertainty of solar generation in the Korean power system and analyzes the effectiveness of the Energy Storage System (ESS) in reducing these costs, using the stochastic form of multi-period security-constraint optimal power flow. To determine the input of stochastic solar generation, an ARMAX model and Monte Carlo method are applied for representative solar farms. The results indicate solar power generation by 2029 would increase the required reserve by 56.2% over the current level but coupling a 10 GWh of lithium-ion ESS would reduce it by 61.1% compared to increased reserve level for 2029. The operating cost reduction (benefit) by ESS would be 80.8% higher in 2029 compared to the current level and cover 89.9% of its installation cost. The benefit of ESS will be improved when (1) offer prices of reserves correctly reflect the true opportunity cost of providing reserve services and (2) more variable renewable energies are deployed.
Funder
National Research Foundation of Korea
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献