3D Vehicle Trajectory Extraction Using DCNN in an Overlapping Multi-Camera Crossroad Scene

Author:

Heo JinyeongORCID,Kwon Yongjin (James)

Abstract

The 3D vehicle trajectory in complex traffic conditions such as crossroads and heavy traffic is practically very useful in autonomous driving. In order to accurately extract the 3D vehicle trajectory from a perspective camera in a crossroad where the vehicle has an angular range of 360 degrees, problems such as the narrow visual angle in single-camera scene, vehicle occlusion under conditions of low camera perspective, and lack of vehicle physical information must be solved. In this paper, we propose a method for estimating the 3D bounding boxes of vehicles and extracting trajectories using a deep convolutional neural network (DCNN) in an overlapping multi-camera crossroad scene. First, traffic data were collected using overlapping multi-cameras to obtain a wide range of trajectories around the crossroad. Then, 3D bounding boxes of vehicles were estimated and tracked in each single-camera scene through DCNN models (YOLOv4, multi-branch CNN) combined with camera calibration. Using the abovementioned information, the 3D vehicle trajectory could be extracted on the ground plane of the crossroad by calculating results obtained from the overlapping multi-camera with a homography matrix. Finally, in experiments, the errors of extracted trajectories were corrected through a simple linear interpolation and regression, and the accuracy of the proposed method was verified by calculating the difference with ground-truth data. Compared with other previously reported methods, our approach is shown to be more accurate and more practical.

Funder

Ministry of Science ICT and Future Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3