Machine Learning Approach to Quadratic Programming-Based Microwave Imaging for Breast Cancer Detection

Author:

Costanzo SandraORCID,Flores AlexandraORCID,Buonanno Giovanni

Abstract

In this work, a novel technique is proposed that combines the Born iterative method, based on a quadratic programming approach, with convolutional neural networks to solve the ill-framed inverse problem coming from microwave imaging formulation in breast cancer detection. The aim is to accurately recover the permittivity of breast phantoms, these typically being strong dielectric scatterers, from the measured scattering data. Several tests were carried out, using a circular imaging configuration and breast models, to evaluate the performance of the proposed scheme, showing that the application of convolutional neural networks allows clinicians to considerably reduce the reconstruction time with an accuracy that exceeds 90% in all the performed validations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New zeroing NN models with nonconvex saturated activation functions in noisy environments for quadratic minimization dynamics and control;Journal of Computational and Applied Mathematics;2024-10

2. Microwave Breast Imaging for Cancer Diagnosis: An overview [Bioelectromagnetics];IEEE Antennas and Propagation Magazine;2024-08

3. Gaussian Mixture Model-Hierarchical Domain Constraint Framework Enhanced VBIM for Solving the Inverse Scattering Problems;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Deep Learning Enhancement of Born Iterative-Based Inverse Scattering Solution for Breast Cancer Detection;2023 IEEE Conference on Antenna Measurements and Applications (CAMA);2023-11-15

5. Microwave Imaging for Brain Cancer Detection: Enhanced Accuracy with Machine Learning Approach;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3