Microstructure Evolution and Mechanical Property Response of 3D-Printed Scalmalloy with Different Heat-Treatment Times at 325 °C

Author:

Kuo C. N.ORCID,Peng P. C.,Liu D. H.,Chao C. Y.

Abstract

According to the material nature, aluminum alloys are widely applied in aerospace, construction, and automotive applications due to their characteristics of being lightweight, having good formability, and having good corrosion resistance. To further improve the degree of the lightweight quality, introducing a new material with high specific strength and a structure with a lightweight design would be efficient. Scalmalloy (Al-4.49Mg-0.71Sc-0.51Mn-0.27Zr-0.07Fe-0.03Si alloy), which exhibits high specific strength and is made by a 3D printing process with less design limitation, has huge application potential. In this study, the selective laser melting (SLM) process was introduced for sample preparation. Through XRD, EBSD, and TEM, the microstructure of the heat-treated samples at 325 °C with different heat-treatment times was analyzed to evaluate the optimized heat-treatment parameter for 3D printed Scalmalloy. The relationship between the mechanical properties and the variation of precipitation size and volume fraction is discussed in detail in this study.

Funder

Ministry of Science and Technology, Taiwan

Ministry of National Defense, ROC

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3