An All-Atom Simulation Study of Gas Detonation Forming Technique

Author:

Kulkarni AmbarishORCID,Karkaria Vispi,Nandgaonkar Milankumar,Patil Sandeep P.ORCID,Markert BerndORCID

Abstract

The high-speed forming process is the key to attaining difficult and irregular profiles on ductile materials. In the present work, we proposed the all-atom model of the gas detonation forming process, wherein molecular dynamics (MD) simulations were performed on the aluminum workpiece at different loading speeds similar to the various pressure values in the process. The deformation response of an aluminum workpiece for a wide range of loading speeds, 0.1–8 Å/ps, was investigated. The dome-height, failure patterns, and formability of the aluminum workpiece were examined for these loading speeds. We obtained an inverse relationship between the formability of the aluminum workpiece and the applied loading speed. Moreover, in this work, the influence of the different percentage of defects in the workpieces on the mechanical behavior was investigated. We observed that at lower speeds (< 2 Å/ps), the deformation is observed throughout the workpiece starting from the point of contact in the middle and that is contrary to the deformations observed due to the higher loading speed where localized deformations occur due to creation of slipping planes. We also found that the internal voids lead to the rearrangement of atoms to facilitate the movement of slipping planes leading to better formability compared to the no-void workpieces. This work helps to get a fundamental understanding of deformation behavior in the high-speed forming process with and without defects in the aluminum workpiece at the nanoscale.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3