Influence of Alumina Nanofibers Sintered by the Spark Plasma Method on Nickel Mechanical Properties

Author:

Agureev LeonidORCID,Kostikov Valeriy,Eremeeva Zhanna,Savushkina Svetlana,Ivanov Boris,Khmelenin Dmitriy,Belov Gleb,Solyaev Yuri

Abstract

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference46 articles.

1. Nickel Alloys,2000

2. Metallophysics of High-Strength Alloys;Goldshtein,1986

3. Nickel, Cobalt, and Their Alloys. ASM Speciality Handbook,2000

4. Cladding of molybdenum for service in air at elevated temperature;Bruckart;Trans. Am. Soc. Met.,1952

5. Multiscale modelling of aluminium-based metal–matrix composites with oxide nanoinclusions

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3