Transformations of the Microstructure and Phase Compositions of Titanium Alloys during Ultrasonic Impact Treatment. Part I. Commercially Pure Titanium

Author:

Panin AlexeyORCID,Dmitriev AndreyORCID,Nikonov AntonORCID,Kazachenok Marina,Perevalova Olga,Sklyarova Elena

Abstract

Experimental and theoretical studies helped to reveal patterns of surface roughening and the microstructure refinement in the surface layer of commercial pure titanium during ultrasonic impact treatment. Applying transmission electron microscopy technique, a gradient microstructure in the surface layer of the ultrasonically treated sample, where the grain size is varied from nano- to micrometers was revealed. It was shown that the surface plastic strains of the titanium sample proceeded according to the plastic ploughing mechanism, which was accompanied by dislocation sliding, twinning, and the transformations of the microstructure and phase composition. The molecular dynamics method was applied to demonstrate the mechanism of the phase transformations associated with the formation of stacking faults, as well as the reversible displacement of atoms from their sites in the hcp lattice, causing a change in coordination numbers. The role of the electronic subsystem in the development of the strain-induced phase transformations during ultrasonic impact treatment was discussed.

Funder

The Government of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3