Abstract
In this study, the efficacy of an innovative ultra-fast sintering technique called electro-sinter-forging (ESF) was evaluated in the densification of Fe-Cr-C steel. Although ESF proved to be effective in densifying several different metallic materials and composites, it has not yet been applied to powder metallurgy Fe-Cr-C steels. Pre-alloyed Astaloy CrM powders have been ad-mixed with either graphite or graphene and then processed by ESF. By properly tuning the process parameters, final densities higher than 99% were obtained. Mechanical properties such as hardness and transverse rupture strength (TRS) were tested on samples produced by employing different process parameters and then submitted to different post-treatments (machining, heat treatment). A final transverse rupture strength up to 1340 ± 147 MPa was achieved after heat treatment, corresponding to a hardness of 852 ± 41 HV. The experimental characterization highlighted that porosity is the main factor affecting the samples’ mechanical resistance, correlating linearly with the transverse rupture strength. Conversely, it is not possible to establish a similar interdependency between hardness and mechanical resistance, since porosity has a higher effect on the final properties.
Subject
General Materials Science,Metals and Alloys
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献