Cone Clogging of Submerged Entry Nozzle in Rare Earth Treated Ultra-Low Carbon Al-Killed Steel and Its Effect on the Flow Field and Vortex in the Mold

Author:

Hua ChengjianORCID,Wang MinORCID,Senk Dieter,Wang Hao,Zhang Qi,Zhi Jianguo,Bao Yanping

Abstract

Two submerged entry nozzles (SENs) used for casting 1300 tons and 260 tons of Al-killed steel were dissected. Several parameters including block rate, nozzle clog angle, port width, and port height of the clogged nozzle were introduced to describe the geometry of clogs in the SENs based on the dissection; furthermore, a geometry model was established to describe the characteristics of the nozzle clogging of the SENs. A large-eddy simulation (LES) coupled with the volume of fraction (VOF) method was adopted to simulate the steel–slag interface’s interaction behavior. The vortex visualization and rotation magnitude were characterized by the Liutex method. Quantitatively, the influence of nozzle clogging resulted in block rates of 0% to 45.9% on the flow and vortex distribution in the mold, and the characteristics of the steel–slag interface fluctuation were well verified in the industrial experiment.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3