Author:
Szkliniarz Wojciech,Szkliniarz Agnieszka
Abstract
This paper presents the chemical and phase composition, microstructure, and selected properties both at room temperature and at the temperature corresponding to the expected operating conditions of three successive generations of TiAl-based alloys (Ti-47Al-2W-0.5Si, Ti-45Al-8Nb-0.5(B,C), and Ti-45Al-5Nb-2Cr-1Mo-0.5(B,C)-0.2Si) melted in a vacuum induction furnace with high-density isostatic pressed graphite crucibles. The obtained results of mechanical and physical properties of the produced alloys were compared to the properties of reference alloys with similar chemical composition and melted in a cold copper crucible furnace. The effect of increased carbon content in the produced alloys due to the degradation of the graphite crucible during melting is higher strength properties, lower plastic properties, higher coefficient of thermal expansion, and improved creep resistance. It was shown that the proposed technology could be successfully used in the production of different generation TiAl-based intermetallic alloys.
Funder
SILESIAN UNIVERSITY OF TECHNOLOGY, DEPARTMENT OF ADVANCED MATERIALS AND TECHNOLOGIES, Statutory research fund
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献