Analysis of As-Built Microstructures and Recrystallization Phenomena on Inconel 625 Alloy Obtained via Laser Powder Bed Fusion (L-PBF)

Author:

De Terris ThibautORCID,Castelnau Olivier,Hadjem-Hamouche Zehoua,Haddadi Halim,Michel VincentORCID,Peyre Patrice

Abstract

The microstructures induced by the laser-powder bed fusion (L-PBF) process have been widely investigated over the last decade, especially on austenitic stainless steels (AISI 316L) and nickel-based superalloys (Inconel 718, Inconel 625). However, the conditions required to initiate recrystallization of L-PBF samples at high temperatures require further investigation, especially regarding the physical origins of substructures (dislocation densities) induced by the L-PBF process. Indeed, the recrystallization widely depends on the specimen substructure, and in the case of the L-PBF process, the substructure is obtained during rapid solidification. In this paper, a comparison is presented between Inconel 625 specimens obtained with different laser-powder bed fusion (L-PBF) conditions. The effects of the energy density (VED) values on as-built and heat-under microstructures are also investigated. It is first shown that L-PBF specimens created with high-energy conditions recrystallize earlier due to a larger density of geometrically necessary dislocations. Moreover, it is shown that lower energy densities offers better tensile properties for as-built specimens. However, an appropriate heat treatment makes it possible to homogenize the tensile properties.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3