Innovative Detection and Segmentation of Mobility Activities in Patients Living with Parkinson’s Disease Using a Single Ankle-Positioned Smartwatch

Author:

Goubault Etienne1,Duval Christian23,Martin Camille4,Lebel Karina45ORCID

Affiliation:

1. Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boul. de Maisonneuve O, Montréal, QC H3A 3C2, Canada

2. Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada

3. Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W6, Canada

4. Centre de Recherche sur le Vieillissement, CIUSSS de l’Estrie—CHUS, Sherbrooke, QC J1H 4C4, Canada

5. Département de Génie Électrique et de Génie Informatique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

Abstract

Background: The automatic detection of activities of daily living (ADL) is necessary to improve long-term home-based monitoring of Parkinson’s disease (PD) symptoms. While most body-worn sensor algorithms for ADL detection were developed using laboratory research systems covering full-body kinematics, it is now crucial to achieve ADL detection using a single body-worn sensor that remains commercially available and affordable for ecological use. Aim: to detect and segment Walking, Turning, Sitting-down, and Standing-up activities of patients with PD using a Smartwatch positioned at the ankle. Method: Twenty-two patients living with PD performed a Timed Up and Go (TUG) task three times before engaging in cleaning ADL in a simulated free-living environment during a 3 min trial. Accelerations and angular velocities of the right or left ankle were recorded in three dimensions using a Smartwatch. The TUG task was used to develop detection algorithms for Walking, Turning, Sitting-down, and Standing-up, while the 3 min trial in the free-living environment was used to test and validate these algorithms. Sensitivity, specificity, and F-scores were calculated based on a manual segmentation of ADL. Results: Sensitivity, specificity, and F-scores were 96.5%, 94.7%, and 96.0% for Walking; 90.0%, 93.6%, and 91.7% for Turning; 57.5%, 70.5%, and 52.3% for Sitting-down; and 57.5%, 72.9%, and 54.1% for Standing-up. The median of time difference between the manual and automatic segmentation was 1.31 s for Walking, 0.71 s for Turning, 2.75 s for Sitting-down, and 2.35 s for Standing-up. Conclusion: The results of this study demonstrate that segmenting ADL to characterize the mobility of people with PD based on a single Smartwatch can be comparable to manual segmentation while requiring significantly less time. While Walking and Turning were well detected, Sitting-down and Standing-up will require further investigation to develop better algorithms. Nonetheless, these achievements increase the odds of success in implementing wearable technologies for PD monitoring in ecological environments.

Funder

Quebec Parkinson Network (QPN), Parkinson Quebec, and Canada Research Chair in Biomechanical Movement Signature

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3