Abstract
Marine sponge-associated bacteria are known as bio-active compound produce. We have constructed metagenome libraries of the bacteria and developed a metagenomic screening approach. Activity-based screening successfully identified novel genes and novel enzymes; however, the efficiency was only in 1 out of 104 clones. Therefore, in this study, we thought that bioinformatics could help to reduce screening efforts, and combined activity-based screening with database search. Neutrophils play an important role for the immune system to recognize excreted bacterial by-products as chemotactic factors and are recruited to infection sites to kill pathogens via phagocytosis. These excreted by-products are considered critical triggers that engage the immune system to mount a defense against infection, and identifying these factors may guide developments in medicine and diagnostics. We focused on genes encoding amino acid ligase and peptide synthetase and selected from an in-house sponge metagenome database. Cell-free culture medium of each was used in a neutrophil chemiluminescence assay in luminol reaction. The clone showing maximum activity had a genomic sequence expected to produce a molecule like a phospho-N-acetylmuramyl pentapeptide by the metagenome fragment analysis.
Funder
Japan Society for the Promotion of Science
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献