A New Approach to Quantifying Muscular Fatigue Using Wearable EMG Sensors during Surgery: An Ergonomic Case Study

Author:

Merbah Johan1ORCID,Caré Bertrand R.2ORCID,Gorce Philippe13,Gadea François1,Prince François14

Affiliation:

1. International Institute of Biomechanics and Occupational Ergonomics, 83400 Hyères, France

2. BERGIA Solutions, 83000 Toulon, France

3. International Institute of Biomechanics and Occupational Ergonomics, Université de Toulon, STAPS, CS60584, 83041 Toulon, France

4. Département de Chirurgie, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada

Abstract

(1) Background: Surgeons are exposed to musculoskeletal loads that are comparable to those of industrial workers. These stresses are harmful for the joints and muscles and can lead to musculoskeletal disorders (MSD) and working incapacity for surgeons. In this paper, we propose a novel ergonomic and visualization approach to assess muscular fatigue during surgical procedures. (2) Methods: The activity of eight muscles from the shoulder girdle and the cervical/lumbar spines were evaluated using position and electromyographic wearable sensors while a surgeon performed an arthroscopic rotator-cuff surgery on a patient. The time and frequency-domain variables of the root-mean-square amplitude and mean power frequency, respectively, were calculated from an electromyographic signal. (3) Results: The entire surgical procedure lasted 73 min and was divided into 10 sub-phases associated with specific level of muscular activity and fatigue. Most of the muscles showed activity above 60%, while the middle trapezius muscles were almost constantly activated (>20%) throughout the surgical procedure. (4) Conclusion: Wearable sensors can be used during surgical procedure to assess fatigue. Periods of low-to-high activity and fatigue can be evaluated and visualized during surgery. Micro-breaks throughout surgical procedures are suggested to avoid fatigue and to prevent the risk of developing MSD.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3