Co-Occurrence of Earthquake and Climatic Events on Groundwater Budget Alteration in a Fractured Carbonate Aquifer (Sibillini Mts.—Central Italy)

Author:

Mastrorillo Lucia12ORCID,Viaroli Stefano3ORCID,Petitta Marco2ORCID

Affiliation:

1. Department of Sciences, University of Roma Tre, 00146 Rome, Italy

2. Department of Earth Sciences, Sapienza University of Rome, 00185 Rome, Italy

3. Department of Earth Sciences, University of Pisa, 56126 Pisa, Italy

Abstract

The combination of several factors related both to human pressure as well as natural issues could lead to a marked alteration of the groundwater budget terms and a decrease in groundwater availability. The basal aquifer of the Sibillini Mts. is a strategic resource of drinking water in the central sector of Apennine (Italy). The seismic sequence that occurred in this area in 2016 induced transient and sustained modifications in the aquifer settings. Springs located on the western side of the Sibillini Mts. were characterized by an increased discharge, while in contrast, the eastern springs suffered an intense drop in their groundwater discharge. In 2017, a drought period started immediately after the exhaustion of the seismic sequence effect. The comparison between the recharge and discharge of the major springs in the 2000–2020 period allowed the definition of the different responses of the aquifer to the co-occurrence of earthquakes and climatic events. The hydrodynamic alteration triggered by the earthquake induced a huge depletion of the groundwater stored in the eastern sector of the basal aquifer (at least 50 × 106 m3). The scarce recharge occurring in the following drought period (more than 30% of the average annual value) was not enough to restore the groundwater resources, causing a serious drinking water supply crisis in the main tapped springs in the eastern sector of the aquifer.

Funder

CIIP S.p.A. Cicli Integrati Impianti Primari.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3