Intelligent Detection Method for Wildlife Based on Deep Learning

Author:

Li Shuang12,Zhang Haiyan12,Xu Fu12

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

Abstract

Wildlife is an important part of natural ecosystems and protecting wildlife plays a crucial role in maintaining ecological balance. The wildlife detection method for images and videos based on deep learning can save a lot of labor costs and is of great significance and value for the monitoring and protection of wildlife. However, the complex and changing outdoor environment often leads to less than satisfactory detection results due to insufficient lighting, mutual occlusion, and blurriness. The TMS-YOLO (Takin, Monkey, and Snow Leopard-You Only Look Once) proposed in this paper is a modification of YOLOv7, specifically optimized for wildlife detection. It uses the designed O-ELAN (Optimized Efficient Layer Aggregation Networks) and O-SPPCSPC (Optimized Spatial Pyramid Pooling Combined with Cross Stage Partial Channel) modules and incorporates the CBAM (Convolutional Block Attention Module) to enhance its suitability for this task. In simple terms, O-ELAN can preserve a portion of the original features through residual structures when extracting image features, resulting in more background and animal features. However, O-ELAN may include more background information in the extracted features. Therefore, we use CBAM after the backbone to suppress background features and enhance animal features. Then, when fusing the features, we use O-SPPCSPC with fewer network layers to avoid overfitting. Comparative experiments were conducted on a self-built dataset and a Turkish wildlife dataset. The results demonstrated that the enhanced TMS-YOLO models outperformed YOLOv7 on both datasets. The mAP (mean Average Precision) of YOLOv7 on the two datasets was 90.5% and 94.6%, respectively. In contrast, the mAP of TMS-YOLO in the two datasets was 93.4% and 95%, respectively. These findings indicate that TMS-YOLO can achieve more accurate wildlife detection compared to YOLOv7.

Funder

National Key R&D Program of China

The Emergency Open Competition Project of National Forestry and Grassland Administration

Outstanding Youth Team Project of Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3