An Innovative Collision-Free Image-Based Visual Servoing Method for Mobile Robot Navigation Based on the Path Planning in the Image Plan

Author:

Albekairi Mohammed1ORCID,Mekki Hassen2ORCID,Kaaniche Khaled1ORCID,Yousef Amr34ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia

2. NOCCS Laboratory, National School of Engineering of Sousse, University of Sousse, Sousse 4054, Tunisia

3. Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah 21589, Saudi Arabia

4. Engineering Mathematics Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt

Abstract

In this article, we present an innovative approach to 2D visual servoing (IBVS), aiming to guide an object to its destination while avoiding collisions with obstacles and keeping the target within the camera’s field of view. A single monocular sensor’s sole visual data serves as the basis for our method. The fundamental idea is to manage and control the dynamics associated with any trajectory generated in the image plane. We show that the differential flatness of the system’s dynamics can be used to limit arbitrary paths based on the number of points on the object that need to be reached in the image plane. This creates a link between the current configuration and the desired configuration. The number of required points depends on the number of control inputs of the robot used and determines the dimension of the flat output of the system. For a two-wheeled mobile robot, for instance, the coordinates of a single point on the object in the image plane are sufficient, whereas, for a quadcopter with four rotating motors, the trajectory needs to be defined by the coordinates of two points in the image plane. By guaranteeing precise tracking of the chosen trajectory in the image plane, we ensure that problems of collision with obstacles and leaving the camera’s field of view are avoided. Our approach is based on the principle of the inverse problem, meaning that when any point on the object is selected in the image plane, it will not be occluded by obstacles or leave the camera’s field of view during movement. It is true that proposing any trajectory in the image plane can lead to non-intuitive movements (back and forth) in the Cartesian plane. In the case of backward motion, the robot may collide with obstacles as it navigates without direct vision. Therefore, it is essential to perform optimal trajectory planning that avoids backward movements. To assess the effectiveness of our method, our study focuses exclusively on the challenge of implementing the generated trajectory in the image plane within the specific context of a two-wheeled mobile robot. We use numerical simulations to illustrate the performance of the control strategy we have developed.

Funder

Deanship of Scientific Research at Jouf University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3