Spatial and Temporal Evaluation of the Latest High-Resolution Precipitation Products over the Upper Blue Nile River Basin, Ethiopia

Author:

Abebe Sintayehu A.ORCID,Qin TianlingORCID,Yan Denghua,Gelaw Endalkachew B.ORCID,Workneh Habtamu T.,Kun Wang,Liu Shanshan,Dong Biqiong

Abstract

Quality and representative precipitation data play an essential role in hydro-meteorological analyses. However, the required reliability and coverage is often unavailable from conventional gauge observations. As a result, globally available precipitation datasets are being used as an alternative or supplementary to gauge observations. In this study, the accuracy of three recently released, high-resolution precipitation datasets with a spatial resolution of 0.1° and a daily temporal resolution is evaluated over the Upper Blue Nile River Basin (UBNRB) for the period of 2007 to 2016. The datasets are Integrated Multi-satellitE Retrievals for GPM version 6 (IMERG6), Multi-Source Weighted-Ensemble Precipitation version 2.2 (MSWEP2.2) and soil moisture to rain using Advanced SCATterometer version 1.1 (SM2RAIN-ASCAT1.1). The comparison was made between rain gauge observations and two other high-resolution precipitation datasets named Enhancing National Climate Services (ENACTS) and Climate Hazards Group Infrared Precipitation with Stations version 2 (CHIRPS2). The modified Kling-Gupta efficiency (KGE’) and four categorical indices named probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and frequency bias (fBIAS) was used to measure the skills of each dataset. Results revealed that, except SM2RAIN-ASCAT1.1, all other datasets show a better ability on a monthly time scale for areas with an elevation below 1500 m above sea level (m.a.s.l). The overall performance was better in the wetter months of March to August than the drier months of September to February. Besides, all products including SM2RAIN-ASCAT1.1 could detect no rain events (rain < 1 mm) correctly, but their skill deteriorates on identifying higher intensity events. By comparison, ENACTS (calibrated with most quality gauges of Ethiopia) and CHIRPS2 exhibited the best performance due to their high-resolution nature and inclusion of physiographic information in their data generation procedures. IMERG6 and MSWEP2.2 showed the next best performance according to both the continuous and categorical indices used. SM2RAIN-ASCAT1.1 demonstrates the least skill everywhere due to problems that could be associated with misinterpretations of soil moisture signals by the SM2RAIN algorithm. Considering the scarcity of gauged datasets over UBNRB, IMERG6 and MSWEP2.2 could be regarded as valuable datasets for hydro-climatic analysis, mainly where gauge density is low. SM2RAIN-ASCAT1.1, on the other hand, needs significant bias correction to treat its apparent wet biases before any application.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3