Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production

Author:

Bounnit Touria,Saadaoui ImenORCID,Rasheed Rihab,Schipper Kira,Al Muraikhi Maryam,Al Jabri Hareb

Abstract

Nannochloris atomus (QUCCCM31) is a local marine microalga showing potential to serve as renewable feedstock for biodiesel production. The investigation of the impact of temperature variation and nitrogen concentrations on the biomass and lipid productivities evidenced that biomass productivity increased with the temperature to reach an optimum of 195 mgL−1 d−1 at 30 °C. Similarly, the lipid content was strongly influenced by the elevation of temperature; indeed, it increased up to ~3 folds when the temperature increased from 20 to 40 °C. When both stresses were combined, triacylglycerols and lipid productivity reached a maximum of 45% and 88 mgL−1 d−1, respectively at 40 °C. Cultures under high temperatures along with Nitrogen-Depleted (ND) favored the synthesis of Fatty Acids Methyl Ester (FAMEs) suitable for high quality biodiesel production, whereas cultures conducted at low temperature coupled with Nitrogen-Limited (NL) led to a production of polyunsaturated fatty acids (PUFAs). Our results support the feasibility of cultivating the thermotolerant isolate QUCCCM31 year-round to meet the sustainability challenges of algal biomass production by growing under temperature and nitrogen variations. The presence of omega 3 and 9 fatty acids as valuable co-products will help in reducing the total process cost via biorefinery.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3