Effect of Floor Shape Optimization on Energy Consumption for U-Shaped Office Buildings in the Hot-Summer and Cold-Winter Area of China

Author:

Ying Xiaoyu,Li Wenzhe

Abstract

This paper explored the effects of the side proportion of building floor shape on building energy consumption. It is based on the analysis of regression models that were developed in the present study. The simplified building models can be used to conduct a parametric study to investigate the effect of building plane shape parameters on total heating and cooling load. DesignBuilder was used to build and simulate individual building configuration. Energy consumption simulations for forty-eight U-shaped buildings with different plane layouts were performed to create a comprehensive dataset covering general ranges of side proportions of U-shaped buildings and building orientations. Statistical analysis was performed using MATLAB to develop a set of regression equations predicting energy consumption and optimizing floor shapes. Furthermore, perimeter-area ratio (PAR), width ratio, and depth ratio were considered as three factors to characterize the quantitative relationship between floor shape and energy consumption. It is envisioned that the binary quadratic polynomial regression models, visualized as a smooth surface in space and mapped to a vortex image on the plane, can be used to estimate the energy consumption in the early stages of the design when different building schemes and design concepts are being considered.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference18 articles.

1. Annual Research Report on Building Energy Conservation,2018

2. China’s energy consumption in construction and building sectors: An outlook to 2100;Guangyue;Energy,2020

3. Energy and Environment in Architecture: A Technical Design Guide;Nick,2000

4. A Green Vitruvius-Principles and Practice of Sustainable Architecture Design;Brophy,2011

5. Floor shape optimization for green building design

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3