Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen

Author:

Dawood FuratORCID,Shafiullah GMORCID,Anda Martin

Abstract

A 100% renewable energy-based stand-alone microgrid system can be developed by robust energy storage systems to stabilize the variable and intermittent renewable energy resources. Hydrogen as an energy carrier and energy storage medium has gained enormous interest globally in recent years. Its use in stand-alone or off-grid microgrids for both the urban and rural communities has commenced recently in some locations. Therefore, this research evaluates the techno-economic feasibility of renewable energy-based systems using hydrogen as energy storage for a stand-alone/off-grid microgrid. Three case scenarios in a microgrid environment were identified and investigated in order to select an optimum solution for a remote community by considering the energy balance and techno-economic optimization. The “HOMER Pro” energy modelling and simulating software was used to compare the energy balance, economics and environmental impact amongst the proposed scenarios. The simulation results showed that the hydrogen-battery hybrid energy storage system is the most cost-effective scenario, though all developed scenarios are technically possible and economically comparable in the long run, while each has different merits and challenges. It has been shown that the proposed hybrid energy systems have significant potentialities in electrifying remote communities with low energy generation costs, as well as a contribution to the reduction of their carbon footprint and to ameliorating the energy crisis to achieve a sustainable future.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3