A Thermomechanical Analysis of Conformal Cooling Channels in 3D Printed Plastic Injection Molds

Author:

Jahan Suchana,El-Mounayri Hazim

Abstract

Plastic injection molding is a versatile process, and a major part of the present plastic manufacturing industry. The traditional die design is limited to straight (drilled) cooling channels, which don’t impart optimal thermal (or thermomechanical) performance. With the advent of additive manufacturing technology, injection molding tools with conformal cooling channels are now possible. However, optimum conformal channels based on thermomechanical performance are not found in the literature. This paper proposes a design methodology to generate optimized design configurations of such channels in plastic injection molds. The design of experiments (DOEs) technique is used to study the effect of the critical design parameters of conformal channels, as well as their cross-section geometries. In addition, designs for the “best” thermomechanical performance are identified. Finally, guidelines for selecting optimum design solutions given the plastic part thickness are provided.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Injection Molding Handbook;Rosato,2012

2. Injection Molding: Integration of Theory and Modeling Methods;Zheng,2011

3. Design and optimisation of conformal cooling channels in injection moulding tools

4. Multiphysics simulation of thermoplastic polymer crystallization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3