A Novel Markerless Lung Tumor-Tracking Method Using Treatment MV Beam Imaging

Author:

Rozario Timothy,Chiu Tsuicheng,Chen Mingli,Jia Xun,Lu Weiguo,Bereg Sergey,Mao WeihuaORCID

Abstract

A novel method was developed to track lung tumor motion in real time during radiation therapy with the purpose to allow target radiation dose escalation while simultaneously reducing the dose to sensitive structures, thereby increasing local control without increasing toxicity. This method analyzes beam’s eye view radiation therapy treatment megavoltage (MV) images with simulated digitally reconstructed radiographs (DRRs) as references. Instead of comparing global DRRs with projection images, this method incorporates a technique that divides the global composite DRR and the corresponding MV projection into sub-images called tiles. Registration is performed independently on tile pairs in order to reduce the effects of global discrepancies due to scattering or imaging modality differences. This algorithm was evaluated by phantom studies while simulated tumors were controlled to move with various patterns in a complex humanoid torso. Approximately 15,000 phantom MV images were acquired at nine gantry angles, with different tumors moving within ranges between 10 and 20 mm. Tumors were successfully identified on every projection with a total maximum/average error of 1.84/0.98 mm. This algorithm was also applied to over 5,000 frames of MV projections acquired during radiation therapy of five lung cancer patients. This tumor-tracking methodology is capable of accurately locating lung tumors during treatment without implanting any internal fiducial markers nor delivering extra imaging radiation doses.

Funder

Elekta

Varian Medical Systems

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3