Abstract
When large-scale annotated data are not available for certain image classification tasks, training a deep convolutional neural network model becomes challenging. Some recent domain adaptation methods try to solve this problem using generative adversarial networks and have achieved promising results. However, these methods are based on a shared latent space assumption and they do not consider the situation when shared high level representations in different domains do not exist or are not ideal as they assumed. To overcome this limitation, we propose a neural network structure called coupled generative adversarial autoencoders (CGAA) that allows a pair of generators to learn the high-level differences between two domains by sharing only part of the high-level layers. Additionally, by introducing a class consistent loss calculated by a stand-alone classifier into the generator optimization, our model is able to generate class invariant style-transferred images suitable for classification tasks in domain adaptation. We apply CGAA to several domain transferred image classification scenarios including several benchmark datasets. Experiment results have shown that our method can achieve state-of-the-art classification results.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference41 articles.
1. Microsoft coco: Common objects in context;Lin,2014
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献