Magnetic Levitation Control Based on Flux Density and Current Measurement

Author:

Castellanos Molina Luis,Galluzzi Renato,Bonfitto Angelo,Tonoli AndreaORCID,Amati Nicola

Abstract

This paper presents an active magnetic levitation application that exploits the measurement of coil current and flux density to determine the displacement of the mover. To this end, the nonlinear behavior of the plant and the physical sensing principle are modeled with a finite element approach at different air gap lengths and coil currents. A linear dynamic model is then obtained at the operating point as well as a linear relation for the displacement estimates. The effectiveness of the modeling approach and the performance of the sensing and control techniques are validated experimentally on an active magnetic levitation system. The results demonstrate that the solution is able to estimate the displacement of the mover with a relative error below 3% with respect to the nominal air gap. Additionally, this approach can be exploited for academic purposes and may serve as a reference to implement simple but accurate active magnetic levitation control using low-cost, off-the-shelf sensors.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery;Bleuler,2009

2. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings: Theory and Implementation;Yoon,2012

3. Control of Active Magnetic Bearings in Turbomolecular Pumps for Rotors with Low Resonance Frequencies of the Blade Wheel

4. A Utility-Scale Flywheel Energy Storage System with a Shaftless, Hubless, High-Strength Steel Rotor

5. Magnetic Bearings and Bearingless Drives;Chiba,2005

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3